Spin diffusion length in LSMO-graphene spin valves

M. Barbone¹, W. Yan², L. C. Phillips², S. Hämäläinen³, A. Lombardo¹, M. Ghidini^{2,4}, X. Moya², F. Maccherozzi⁵, S. van Dijken³, S. S. Dhesi⁵, N. D. Mathur² and A. C. Ferrari¹

¹ Cambridge Graphene Centre, University of Cambridge, CB3 0FA, Cambridge, UK
²Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, UK
³ Department of Applied Physics, Aalto University School of Science, FI-00076, Aalto Finland
⁴ Department of Physics, University of Parma, 43100, Parma, Italy
⁵ Diamond Light Source, Chilton, Didcot, OX11 0DE UK

mb901@cam.ac.uk

Significant progress has been made in graphene spintronics since the first demonstration of a graphene-based spin valve [[1]]. Due to low spin-orbit coupling [[2]] and hyperfine interaction [[2]], spin diffusion lengths have been measured in the range from 1.5 μ m [[3]] up to 285 μ m [[4]]. Here we present spin valves formed by combining La_{2/3}Sr_{1/3}MnO₃ (LSMO) electrodes and few layer graphene channels. LSMO exhibits interfacial spin-polarization close to 100% at low temperature [[5]], making it a promising material for spin valves with highly spin-polarized electrodes [[6]]. We report spin transport on a device fabricated combining a 5 layer graphene and LSMO. The electrodes show a 20% X-ray magnetic circular dichroism contrast (XMCD) asymmetry at remanence after magnetic pulses, as confirmed by photoemission electron microscopy with XMCD. The transition between parallel and anti-parallel states occurs at distinct and well defined magnetic fields. This is further confirmed by magneto-optic Kerr effect microscopy. The resistance difference between the antiparallel and parallel configurations is ΔR =1.0 M Ω , corresponding to a magnetoresistance of 5.5% at 10 K (Fig. 1), and a spin diffusion length~100 μ m (Fig.2). Importantly, our analysis excludes the contribution from tunnelling anisotropic magnetoresistance (TAMR), and allows us to attribute the recorded magnetoresistance entirely to spin transport.

References

- [1] E.W. Hill et al., IEEE Trans. Magn. 42 (2006) 2694.
- [2] D. Huertas-Hernando et al., Pys. Rev. B 74 (2006) 155426.
- [3] N. Tombros et al., Nature. 448 (2007) 571.
- [4] B. Dlubak et al., Nat. Phys. 8 (2012) 557.
- [5] M.Bowen et al., Appl. Phys. Lett. 82 (2003) 233.
- [6] L. Hueso et al., Nature 445 (2007) 410.

Figures

Figure 1: Magneto-transport measurements on a 5layer graphene on LSMO electrodes. Blue and black line correspond to the directions of magnetic field sweep indicated by the arrows.

Figure 2: Simulated magnetoresistance (MR) as a function of interfacial spin polarisation γ , spin diffusion length l_{sf} , and interfacial resistance r_b *using the drift-diffusion model. The blue line indicates the range of values derived for our device.